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TECHNICAL REPORT R-154

RADIANT HEAT TRANSFER TO ABSORBING GASES ENCLOSED BETWEEN
PARALLEL FLAT PLATES WITH FLOW AND CONDUCTION

By TaoMmas H. EINsTEIN

SUMMARY

An analysis 1is presented for obtaining two-
dimensional temperature profiles and heat transfer
m a radiation-absorbing gray gas of wuniform
absorptivity under the combined influence of thermal
radiation, conduction, and gas flow. The gas is
enclosed in a channel of infinite wndth and finite
length formed by two semi-infinite parallel flat plates.
These plates are black emitting surfaces, and the
ends of the channel are formed by porous black
surfaces through which the gas can flow into or out
of the channel. These porous black end surfaces
are used to simulate the radiation environment
external to the channel.

First, results are obtained for heat transfer be-
tween the plates in the absence of both conduction
and flow. These results are found to be in good
agreement with those obtained for the same conditions
by previous workers. Resulls are then presented
Sor heat transfer between the plates for the case of a
radiating and conducting, but stagnant, gas separat-
wng the plates. The effects of the interactions
between radiation and conduction are discussed.
It was found that the heat transfer for combined
radiation and conduction in an absorbing gas s
slightly greater than the sum for each process taken
separately.

Finally, results are given for heat transfer from
the plates to a flowing, radiating gas in the absence
of conduction. The two plates are at the same
temperature, and the gas enters the channel with
uniform velocity and temperature. The results
obtained for this case indicate that the heat irans-
ferred to the flowing gas jfrom the constant tem-
perature surfaces goes through a maximum as the
absorptivity of the gas increases. This is in quali-

tative agreement with earlier results obtained by
other investigators.

All the results are presented in terms of di-
mensionless parameters, for the sake of generality,
and the derivation of the dimensionless parameters,
which are indicative of the effects of conduction and
Aow, s presented.

INTRODUCTION

During the past 5 years, there has been a sig-
nificant increase of interest in the problem of
radiant heat transfer to absorbing gases. Recent
activity in this area has been motivated by the
advent of heat-transfer problems arising in space-
vehicle reentry, magnetohydrodynamic energy
conversion, and energy transport in a gaseous
nuclear reactor.

Hottel was one of the earliest workers in this
field, having investigated radiant heat transfer
from furnace gases as early as 1927. Although
other workers have recently become active in
the field by obtaining solutions for heat transfer
and temperature distributions (refs. 1 to 3),
Hottel’s analysis (ref. 4) of the radiant heat-
transfer problem remains probably the most
realistic, since it is applicable to real (nongray)
gases and may be applied to geometries of almost
arbitrary shape.

Considerable work has been done in studying
the problem of combined radiation and conduc-
tion, particularly in the glass industry, an example
of which is given in reference 5. More recently,
Viskanta has presented a rather complete analyti-
cal treatment of combined radiation and conduc-
tion between two infinite parallel flat plates
separated by an absorbing gas (ref. 2). In both
references 2 and 5, however, only specific results

1
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are presented, and little effort is made to present
the results in generalized form. Much less effort
has been directed toward studying the problem
of radiation heat transfer to flowing, absorbing
gases. This problem was investigated in refer-
ence 3, but some of the simplifying assumptions
made in the analysis render the results valid only
for the case of weak absorption in the gas.

It is the purpose of this investigation to expand
on the work of references 2 and 3. The method
used in the present analysis is a modification of
Hottel’s zoning technique (ref. 4). Results are
obtained for a gray gas in a rectangular channel
formed by two black parallel flat plates of finite
length and infinite width. They are presented in
generalized form for both radiation to a flowing
gas and for combined radiation and conduction
to a stationary gas.

ANALYSIS

A two-dimensional analysis of radiation heat
transfer is made for a gray gas enclosed in a
rectangular channel formed by two black parallel
flat plates of finite length and infinite width.
This configuration is shown in figure 1. A

L

Upper plate

\,
\,

“-Porous
black

plug

Absorbing gus—” Gas flow

Ficure 1.—Rectangular channel configuration.

rigorous treatment of this problem requires the
solution of the following two-dimensional integro-
differential equation, which represents the heat
balance on an infinitesimal volume dV at any point
in the channel:

- -
oT'(r) L 0T(n)
o |7-%, oy’

—k f f f TR fr—R,)dr

+x [ aT;*(?)g(?—ﬁo)dA 1)

4hoT*(B,)+Ge,

>
r=RO

where

4koT4(?£,,) radiant energy emitted
per unit volume at
S5 o
r=R,

- enthalpy increase per
de, oT(r) N unit volume of the
ax r=f, - -

flowing gas at r=R,
-, net conduction heat
2
)\ﬂv(;) 5 transfer into the unit
oy I7-% volume

radiation absorbed per
unit volume at B, from
emission given off by
the surrounding gas

radiation absorbed per
unit volume at B, from
emission of flat plate
and end surfaces

k f f f TP f(r—B,)dr

[ o) gtr—Eoas

If the conduction and convection terms in equa-
tion (1) are removed, the solution is greatly
simplified, since the equation will then be linear
in the emissive power oT* (All symbols are
defined in appendix A.) If, in addition, the
length of the channel also becomes infinite, the
integrals can be partly evaluated in closed form
in terms of exponential-integral functions, as was
done in reference 1. In the absence of these
simplifying restrictions, the only feasible way to
solve this problem appears to be by application
of a method similar to Hottel’s, whereby the
two-dimensional integral in equation (1) is ap-
proximated by a system of algebraic equations.
The cross section of the channel shown in figure 1
is divided into a 10X 10 array of equal size rec-
tangular zones. This arrangement is illustrated
in figure 2. Since the region between the plates
is infinite in depth (perpendicular to the cross
section shown), each of these 100 zones really
consists of a rectangular bar of infinite length.

1 ) : .
0 | 5 =7 ] I [
8 A e = ML -ypper plate —|
i
/ 6 < Gas zones | l '
4—Left end ] A Right end
[ orous orous
R . oo
— 1 | ,Lower plate — :

[ 2 3 4 5 6 7 8 9 10
;

Ficure 2.—Cross section of channel illustrating division
into 100 gas zones und 10 surface zones on each surface.
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Heat-balance equations in the form of equation
(1) can now be written for infinitesimal volume
elements located at the center of the cross sections
of each of the 100 zones. Similarly, the four
enclosing surfaces of the channel are divided into
10 zones each, whose boundaries correspond to
those of their adjacent gas zones described pre-
viously. The surface zones on the plates are all
of equal size, as are those on the porous end sur-
faces. The size of the latter zones will not
generally be equal to the plate surface zones
unless the cross section of the channel is square.

The problem to be solved is: Given the surface
temperatures of the plates and ends of the channel,
find the temperature distribution of the gas in
the channel and the heat exchange between the
gas and the surfaces. The temperature distribu-
tion on the plates and ends is specified by giving
the temperatures for each of the surface zones.
The temperature may vary from one surface zone
to another but is uniform over each zone. The
principal difference between the present approach
and that of reference 4 is that herein the heat
balances are not taken on an entire zone, as was
done in that reference, but rather on infinitesimal
volumes at the center of each zone. This modi-
fication produces a great simplification in the
task of calculating the integrals on the right side
of equation (1).

APPLICATION OF HEAT-BALANCE EQUATION TO ZONE

CENTERS

Application of equation (1) to the infinitesimal
volume elements at the center of the gas-zone
cross section allows replacement of the derivative
and integral terms in equation (1) with approxi-
mate difference quotients and sums that are
algebraic functions of the temperatures at the
center of each of the 100 gas zones. Since a heat-
balance equation is written on the center of each
of the 100 zones, equation (1) is approximated
by a system of 100 nonlinear algebraic equations
whose unknowns are the 100 values of temper-
ature at the centers of the zones just described.
Each of the 100 zones is labeled by a dual sub-
seript 7, 7; ¢ is the position along the length of the
channel, and j represents the position in the
transverse direction. Since the integrals in equa-
tion (1) are space integrals over the entire channel,
they may be replaced exactly by the sums over all
the zones of the integrals over each zone. The
heat-balance equation for an infinitesimal volume

at the center of the (¢, 7)™ zone then becomes, as
described previously:

T’l+1. j—‘T‘i—l. j_
2% (Ay)?

- - -
~k 2 [[ [T Cn = Br) dros
m=1, 10
n=1, 10

T, [[ors g a=Fe ) A,

1,

+k =Zl,m ff" t.l(—;n)ge(—;n

n
l=1,2

Ti,]'+1+Ti,j—-l_2g._j

4ICO'T%,I+GC;;

_}_éi, j) dAe. n

for v=1, 10; =1, 10 (2)
5
Here R, ; is the position vector of the center of

S
the (%,7)* zone and r,, , is the position vector of

any point in the cross section of the (m,n)™
-

5
zone. Similarly, r,, and r, are position vectors of
any point on the surface zones on the plates and

ends, respectively. The function f(r,,, n Ri ;) 1s
the exchange factor from an infinite-line source
-

through position 7, , in the cross section of the
(m, n) ™ gas zone to an infinitesimal volume at the
center of the (¢,7)™ gas zone. The exchange fac-
tors from infinite-line-surface sources on the plate
and end surfaces to an infinitesimal volume at the

> >
center of the (7, 7)™ gas zone are g,(r,—RE; ;) and
ge(r,, Ri », respectively. Similarly, T,,; and

T,., represent the temperatures of the surface
zones on the /™ plate or end, respectively. The
-

line-source to point exchange factors f(s) and

5
g(s) are derived in appendix B. It is shown that
5

f(s) is dependent only on the product of the gas
absorptivity and the perpendicular distance from

N
the point to the line source, and that g(s) is, in
addition, dependent on the perpendicular distance
from the point to the surface plane in which the
line-surface source lies.

ALLOWANCE FOR VARIATION OF TEMPERATURE IN GAS
ZONES

Thus far, the only temperatures that have been
discussed are those of infinitesimal volumes at
the center of each zone. Generally, the gas
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temperature in a zone will not be uniform but will
be a function of the position in the zone. The
spatial dependence of gas temperature in a zone
can be quite closely approximated by assuming
that the variation of temperature in that zone is
linear in two dimensions. A method of producing
such an approximation is discussed subsequently.
Since the channel is divided into 100 gas zones of
equal size, the dimensions of the cross section of
each zone are L/10 by D/10. 1In the cross section
of each zone, a rectangular coordinate system may
be set up with the origin at the center of the cross
section. The region covered by a zone is then
defined by — L/20 <4 < L/20 and— D/20 <v < D/20.
The temperature field in the (m, n)*™ zone is then
approximated by the following linear function:

T4, o) =T nt (Thari—Th) 7
+(Ths—Th )5 (8

where the dimensions of the zone are given by
U=L/10 and V=D/10. 'The temperatures at the
center of the two zones adjacent to the (m,n)™
zone on the sides toward the (7, §)*™ zone are
Tosi,n and T, .o, where the subscripts 7, § and
m, n have the same meaning as in equation (2).
The coordinates in the (m, n)™ zone u, v are such
that their positive direction is toward the (7, 7)™
zone. Equation (3) is then multiplied by the
-

5
exchange factor f[r, .(u, v) —E; ], and the integral
- - -

f f fch"‘(rm, M Ty n— B ;)d70, -, which appears

in equation (2), is evaluated numerically for each
zone. The details of this integration are given
in appendix C.

EVALUATION OF EXCHANGE INTEGRALS

The labor of evaluating all the integrals that
appear in equation (2) for each combination of
%, 7 and m, n is considerable, and it is desirable to
reduce the magnitude of this effort if at all possible.
Fortunately, a simplification is possible because of
a certain symmetry in the problem created by the
fact that all the zones are of identical size. In
the evaluation of the zone exchange integrals in
appendix C, it is shown that the integration of the
exchange factors from one zone to the center of
another is independent of the zone temperatures.

N
Since the nature of the exchange factors f(s) is

such that the volume integrals reduce to surface
integrals over the zone cross section (see appendix
B), the integrals evaluated in appendix C are of
the form:

f f H1 T, ) — B, ) do
ff Uf[?m.n(% 0)—1_3)1-_j]du dv

The integrands and resulting integrals immedi-
ately preceding are functions only of the relative
positions of the (z, 7)™ and (m,n)™ zones. Thus,
if the (¢,7)™ zone is taken to be at one of the
corners of the channel cross section, for example,
7,7=1, 1, computation of the preceding integrals
from all the m, n zones (m=1, 10; n=1, 10) with
respect to 1, 1, yields the exchange integrals
between any zone and the center of any other
zone in the system. The integral of the 1,1 zone
with respect to 1, 1 gives the exchange between
an entire zone and an infinitesimal volume located
atits center. With thismethod, it is not necessary
to compute these integrals for every zone-pair
combination, which would involve (100)?=10,000
integrations, if, for instance, the zones were not
of equal size. Rather, it is only necessary to
compute the 100 zone-pair exchange integrals
given previously, which represents a considerable
reduction of effort.

The evaluation of the surface to gas exchange

5
integrals ¢(s), which appear in the last two terms
of equation (2), is somewhat simpler, especially
since the temperature over each surface zone is
uniform in this analysis. Consequently, the
temperature again is outside the integral, and the

- -
integrals ff grn—R; ;)dA4, over each surface

zone, which give the exchange from that surface
zone to an infinitesimal volume at the center of
the (7, 7)™ gas zone, are integrated numerically.
Again, since these integrals are dependent only
on the relative positions of the two zones, use
may again be made of the symmetry of the prob-
lem to reduce the amount of work required to
calculate the surface-zone to gas exchange inte-
grals for all possible zone combinations. There are
generally two different size surface-zone elements,
one for the ends and one for the plates. If these
elements are placed in one of the corners of the
channel and the exchange integrals are computed
from these corner surface elements to the centers



RADIANT HEAT TRANSFER TO ABSORBING GASES BETWEEN PARALLEL FLAT PLATES 5

of all the 100 gas zones, there will result a total
of 200 different exchange integrals, 100 end-
surface to gas exchange integrals, and 100 plate-
surface to gas exchange integrals. Again, these
200 integrals cover all possible combinations of
surface-gas zone pairs. The surface-gas zone-pair
exchange integrals just described, together with
the 100 gas-gas zone-pair exchange integrals
described earlier, are sufficient to define all the
exchange integrals in equation (2) in terms of
the 100 unknown gas-zone-center temperatures
and the 40 known surface-zone temperatures.
Another simplification in the computation of
the exchange integrals discussed previously is that
the radiation exchange between any two points
in the channel separated by more than seven

N
mean free paths k|s|>7, can essentially be
neglected. It is shown in appendix D that, for
the case of uniform emissive power in a region of
absorbing gas, the error incurred by neglecting
all sources more than seven mean free paths away
is less than 0.1 percent. Because of this, the

- -
exchange factors g(s) and f(s) are set equal to

N
zero for all k|s|>7, and the evaluation of the
exchange integrals at these distances is eliminated.

SOLUTION OF HEAT-BALANCE EQUATIONS

The evaluation of all the gas to gas and surface
to gas exchange integrals having been completed,
it is then possible to reduce the summation of the
integrals in equation (2) to finite sums of individual
terms linear in the 100 unknown emissive powers
o1, .. Were it not for the conduction and
convection terms, the resulting system of equations
would be entirely linear in 7% The presence of
these important and realistic terms, however,
gives rise to mnonlinearities in the system of
algebraic equations to be solved; consequently,
the system of equations described in equation (2)
must be solved by iterative means. The well-
known Newton-Raphson method for solving
systems of nonlinear algebraic equations is used
in the present analysis to obtain the solutions,
and the details of its application are given in
appendix E.

It should be mentioned that the accuracy of the
solution of the system of equations in equation

636-792 -63-—2

(2) deteriorates rather rapidly when the zones
themselves become optically dense; for instance,
when the opacity of a zone in the direction of
maximum heat transfer (perpendicular to the
plates) becoimnes greater than one mean free path.
When this occurs, the solution of equation (2)
is more susceptible to error because of the following
two considerations: First, at high values of zone
opacity, the assumption of linear variation of
emissive power in the cross section of a zone is
no longer necessarily an accurate representation
of the actual situation, particularly in gas zones
adjacent to a surface boundary. Second, as the
zones become increasingly opaque, equations (2)
tend to become indeterminate. This second
situation occurs when a zone becomes so opaque
that an infinitesimal volume at the center of a
zone effectively receives radiation only from the
zone in which it is located and almost none {rom
any of the other surrounding zones. This has
the following effect on the coeflicients of the
heat-balance equation (eq. (2)) for that particular
zone. The exchange integrals from the other
zones tend to vanish, and, consequently, so do
the coefficients of the emissive powers of the
other zones in the given equation. The exchange
integral from the given zone to its center becomes
larger, rapidly approaching the limiting value of
4 (sce appendix D) and thus canceling out the
emission coeflicient at the zone center. Conse-
quently, the coellicient of the emissive power of
the given zone also tends to vanish. Since all
the coefficients representing radiative exchange
in equation (2) become vanishingly small, the
effects of small errors made in computing the
exchange integrals become magnified, and the
system of equations also tends toward indeter-
minacy. Because of the preceding considerations,
use of the method of this report should be limited
to cases in which the optical distance across the
zone, in the direction perpendicular to the surface
of the plates, does not exceed one mean free path.

The solution of equation (2) yields the gas
temperatues at the centers of all the zones. This,
therefore, essentially determines the entire two-
dimensional temperature profile in the channel.
The problem, however, is not yet completely
solved; the amount of heat transferred between
the gas and the bounding surfaces of the channel
remains to be determined.
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DETERMINATION OF NET HEAT TRANSFER TO SURFACE
ZONES

The problem of determining the heat exchange
between the surfaces and the gas essentially can
be divided into two parts: (1) the direct radiant
heat transfer among the four bounding walls
of the channel, and (2) the heat exchange between
these surfaces and the gas by combined radiation
and conduction.

As mentioned earlier, the temperature of each
surface zone is assumed to be uniform over that
zone. Consequently, when the radiation from
one surface zone to another is computed, the
temperature may be taken outside the exchange
integral to simplify matters. The radiation

from surface zone m to surface zone n 1S
given by
- -
gron=T4 [ (4, [ [G=radn @)
A 5

N
The function A(s) is the surface-line-source to
infinitesimal-surface-area exchange {actor, the
derivation of which is given in appendix B. The
integration of equation (4) is carried out over
both zone m, the emitter, and over all of zone =,
the receiver, for both the parallel and perpendicular
cases.

The computation of the radiative exchange
between the gas and the walls is somewhat more
involved. At first glance, it might seem possible
that this exchange could be given by the surface-
gas exchange integrals:

e
ff 0T gy, (P Fs ) d A

It should be emphasized, however, that these
integrals gave only the exchange between a surface
zone and an infinitesimal volume element at the
center of a gas zone; they do not give the exchange
between a surface zone and an entire gas zone.
The actual integral that gives this exchange
would be

- - o
g, jvmszfdﬂ. ]ff oT(rs, ) g(rm—rs, ) dAn

This integral represents exactly the radiation
emitted from an entire gas zone 7, j that is trans-
ferred to a surface zone m and includes the effect
of varying gas temperature in the zone. The

evaluation of an integral of so high an order
is prohibitively laborious; consequently, practical
considerations dictate that some simplifying
approximations be made. Therefore, it was
assuined that the heat flux from any gas zone
reaching a surface zone was uniform over that
surface zone and equal to the flux reaching an
infinitesimal surface area located at the center of
that zone. On the basis of this assumption, the
integration over the surface zone may be omitted,
and the previous equation reduces to

Qi,j—)m:AmfffaT4<ri,j)g(Rm—ri,j)dTi,j (5)

5
where R, is the position vector of the infinitesimal
area at the center of the m™ surface zone. The

5
temperature distribution 7'(r; ;) in the gas zone
is again given by equation (3) with (2, 7)—(m, n).
The details of the integration of equation (5)
are very similar to those given in appendix C
for the gas-zone to gas exchange integrals, where
the infinitesimal volume element is replaced by a

similar surface element, and the gas to gas exchange
-

factors f(s) are replaced by the surface to gas
-

exchange factors ¢g(s). Again, as in the previous

case, the linear form of the gas-zone temperature
-

distribution T'(r; ;) makes it possible to formulate
equation (5) in terms of the gas-zone-center
temperatures T, ,, which may be taken outside
the integral. The residual integrands are then

N
entirely in terms of ¢(s) and wu,», and, as before,
the resulting exchange integrals are only dependent
on the relative positions of the surface and gas
zones. As in the previous case for the surface-
zone to gas exchange integrals,

[[ sa—Eepa,

the present gas-zone to surface exchange

integrals

[[[ o pdr, = [[ otEu—r a0
i,

are computed in the same manner as before, which
results in a total of 200 values needed to describe
the exchange between any possible gas-surface
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zone combination. Again the nature of the

N
exchange factors ¢(s) is such. that the volume
integrals over the gas zone are reduced to surface
integrals over the gas-zone cross section. The
assumption that the heat flux over a surface zone
is uniformly represented by the value at the center
of the zone is an excellent one when the distance
between the surface and gas zones is large and
is satisfactory even when the zones are adjacent,
if the zone sizes are small relative to the size of
the entire channel.

The computation of radiative exchange to a
given surface zone from all the other surface
and gas zones in the system having thus been
deseribed, the net radiation heat transfer at a
given surface zone can easily be calculated by
subtracting the sum of the radiation received
from all other zones from the radiation emitted
at that surface. Specifically, for a surface zone
on one of the plates:

4
Pm,1

gAm, 1 ‘:-Am, IG'T

10 > =
—> oy, , f f dA4,, f f hrop (et d A,

2 5 o, [ aan [ [htr—raaa,

n=1 1=1,2

—A, ﬂ:z:l ;?1_,;0l fffT (;‘Z f) 172 {;f,i—fgm) drs, s
(6)

The factor h,, is the surface exchange factor
between two parallel surface zones and %, is that
for two perpendicular surface zones.

The net radiation heat transfer at each surface
zone having been computed in the previous man-
ner, there remains to be calculated only the con-
duction heat transfer between each plate surface
zone and the adjacent gas. Since axial conduc-
tion is neglected in this analysis, only transverse
conduction in a direction perpendicular to the
plates is considered. At each plate surface zone,
the heat conduction to the gas at y=D or at y=0
is given by

T
I =4 By o= (3}

The transverse temperature gradient at the plate
is computed from the slope of a parabola fitted
through the surface temperature at the plate and

the gas temperatures at the centers of the first
and second gas zones away from the plate T, ,
and Tm'nii:

bT _ng, n_STpm—Tm ntl
w 'wall— 3A’!/

(8)

where 77, , is the temperature at the center of the -
gas zone adjacent to the m™ surface zone on the
plate. By combining the results of equation (7)
with those of equation (6), the net total heat
transfer for each surface zone on the plates is ob-
tained. Since axial conduction is not considered,
the net heat transfer through the ends of the
channel is obtained by applying equation (6) to
the end-surface zones on the porous black plugs.
PRACTICAL CONSIDERATIONS

At this point, a very important practical facet
of this analysis should be discussed. Although
allowance was made for the variation of gas tem-
perature throughout the entire channel, in each of
the many different exchange integrals that were
derived, it was possible to state the problem en-
tirely in terms of the gas-zone-center temperatures,
which then could be taken outside of the integrals.
The resulting integrals were then problem inde-
pendent in that they were a function only of the
size of the zones, the gas absorptivity, and the
relative positions of the zones. Therefore, a set
of these exchange integrals can be computed for
given channel dimensions and gas absorptivity.
Since the labor required to perform these integra-
tions is usually an order of magnitude greater (in
terms of time) than that required for the iterative
solution of equation (2), it makes sense to com-
pute these exchange integrals separately from the
rest of the problem. Then, with a set of exchange
Integrals for a given channel configuration and gas
absorptivity, it is possible to solve many different
problems merely by changing the channel bound-
ary temperature and flow conditions without the
burden of recomputing these exchange integrals
anew for each case.

RESULTS AND DISCUSSION

The system of equations described by equation
(2) was solved on an IBM 7090 computer using
the methods described in the last section for the
general case of a gray gas of constant absorptivity,
enclosed in a black-walled rectangular channel
of aspect ratio L/D equal to 10, for a range of
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optical thickness 0.1 <7,<6; 7r,=FkD, where L is
the gag absorptivity and [ is the distance betwee

the plates. Cases were run for either combined
conduction and radiation in a stagnant gas for a
wide range of thermal conduetivity, or for radia-
tion to a flowing gas, without conduction, for a
wide range of gas-llow rates, sinee it was d,esir(sd
to investigate the effects of conduction and fow
separt ately. The temperatures of each of the two

re considered to be uniform along the
oth of the channel, and the end-surface tem-
peratures were considered to be uniform over the

ends,

A reference was established by runping several
cases for heat transfer between the plates by
vadiation only, without either conduction or flow,
Figure 3 illustrates the heat transfer between the
two plates for the case of a stagnant radistion-
absorbing, noncondueting gas. The two plates
are at uniform but different temperatures Ty and
7., and the end temperatures are equal and ave
chosen between 7% and 7, in sueh a way as to
minimize the effvets of radiation transfer through
the ends on the resulis. Since, in this ¢
equation (1) is linear in o7, the net heat ﬂu\
between the plates may be nondimensionalized by
dividing the computed flux by the fourth-power
difference of the plat The results
obtained compare favorably with those caleulnted
in veference 1, for infinite parallel fat plates.
The aume*mm\t is not perfect because of slight
end effects due to the finite length of the channel

Hagt fiux vetwWeen piates:,

8 72 (8 20 =24 2.8 32
Optical distance between plates, v,

Frovee 3.
pure radiation without conduction or How.

AERONATTICS AND 8P

Dimensionless heat transfer befween plates for

ADMININTRATION:

1.0

— Opﬁcai‘ distance __
between piates,
Ty

*

saiand approximation)

Gas temperature, —7.1

4 6

Distance between plates, —

Fioure 4. - Dimensionl
gas enclosed between two pars
conduetion or How. Plate
reference femperafure is temperature of

for which the present results are
dimmensionless transverse temperature pr
the gas are shown in figure 4 for two
optical thicknesses. An unusual feature
temperature profiles is that they are

at either plate. "This Is a characteristic
tion heat transfer between an absorbing L_;sl\ and.a
surface when comduction is not present.  As wil
be seen later, this discontinuity at the
vanishes when conduction ig ecombined

tion. Also of interest is the fuct that the ¢

RL)%SLI‘!HA Appmxlnmtmn a8
This approximation states th at

§e
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with E(0)=E.,=¢T: and is valid for large values
of ky. Thus, the emissive power E—aT4 varies
linearly in the gas between the plates, and, in
terms of the limiting transverse temperature dis-
tribution between the plates, the integration of
equation (9) gives

TN\ (T TNy

() =)+ -(z) )5 o
where E(D)=¢T;. Bquation (10) is the limiting
temperature distribution as 7, becomes large and

is plotted in figure 4.

COMBINED CONDUCTION AND RADIATION

In order to discuss the effect of conduction on
radiation in a stagnant gas, it is desirable to
present the results in some type of nondimensional
parametric form to obtain complete generality.
The desired form is found by neglecting the flow
term in equation (1) and then dividing by oTjk,
where T, is a reference temperature, which re-

sults in
52 I:T(RL) ]
T, |

A
TG D
Telrem g
= [T rrars [ 72 ] shaa a

Equation (11) is now posed in terms of dimension-
less temperatures. The integrals on the right are
functions of the channel dimensions and gas ab-
sorptivity, which relation may be condensed to
dependence on 7, and L/D. The other parameter
that appears in equation (11) is (/D) /7,6T2. The
solution of equation (11) for the dimensionless
temperature profile then depends on the previous
three parameters and the boundary conditions of
the channel, which, with end effects neglected, is
simply the temperature ratio 7,/Tx« of the two
plates. In summation, when the end tempera-
tures are equal and chosen such as to minimize
end effects, the solution of equation (11) is com-
pletely determmined by the following set of pa-
rameters: (\/D)/r,0T%, 7o, L/D, To/Tx. The dual
dependence on 7, may be eliminated, and then
the solution is equally well determined by the set
of parameters given as ()\/D)/JT*, 70, LID, T/ Tx.
The parameter (\/D)/cT; represents the effect of
thermal conduction on the solution of equation

(1); for brevity, define Ner=(\D)/sT;. The
results for combined radiation and conduction
may then be generally represented in terms of
N¢r.  The boundary conditions for which the com-
bined radiation-conduction problem is solved are
the same as those for the pure radiation case
previously discussed. The two plates are at uni-
form but different temperatures Tx and 7., and
the end temperatures are equal and are chosen
such as to minimize end effects. Figure 5(a)
shows the effect of combined radiation and con-
duction on the transverse temperature profile for
both a weakly absorbing gas (r,=0.2) and a rela-
tively opaque gas (7,=4.0). As mentioned earlier,
because of the effect of conduction, the tempera-
ture profiles become continuous at the plates.
For both cases illustrated, however, the tempera-
ture gradient and, thus, the heat conduction at
the cold wall was substantially greater than for
the case of pure conduction (shown by the linear
temperature profile). At the hot wall, however,
the temperature gradient may be either greater
or less than that for pure conduction. The
temperature gradient at the hot wall for the
combined process is usually less than that for
conduction alone (fig. 5(a)), except when both =,
and Neg are quite low (fig. 5(b)).

LWOp ¢ 1 v 1 1 Voot
L Optical distance _Z |_i-Pure radiation 7;
.o| between plates, | |7 _,’_ (M;£=0) P ol
| To ./ (/ ||
8 ] ! = 1]
N - //{ 1] h /// // 1]
: 2.0/ LV
e Tt T / . T
2 —_ / i
g 8 v 4L —
e / B 4
s . / y 1] , —
§ i —— t/Pure conduction —
-4 %0.2 T T
/ A l l —T /A—‘Conducﬂon and —
3 A [ radiation |
. [ ~Pure conduction v (N, =0.0208)
—— # CcR N —
00T ) RNERREC
(0] 2 .4 .6 8 100 2 4 .6 .8 1.0
Distance between plates, 77):

(a) Plate temperature ratio, 0.2; conduction-radiation
number, 0.208.
(b) Plate temperature ratio, 0.2; optical distance belween

plates, 1.0.

Ficure 5.—Dimensionless temperature profiles for com-
bined conduction and radiation in absorbing gas enclosed
between two parallel black flat plates. Reference
temperature is temperature of hot plate.
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FicUurE 6.— Variation of augmentation ratio with optical distance betwcen plates for combined radiation and conduction

Another effect of combined radiation and con-
duction is that the total heat transferred between
the plates is slightly greater than the sum of that
for radiation and for conduction taken separately.
This effect is shown in figure 6 where the ratio «
of the combined heat transfer to the sum of both
components taken separately is plotted against
7, for various values of Ngp. 'This augmentation
effect, which is also evident in the results obtained
in reference 2, is a result of the interaction be-
tween radiation and conduction that results from
the nonlinear nature of the combined process.
When 7,=0, the gas is nonabsorbent and its
presence does not enter into the radiation transfer
between the plates. Consequently, the processes
of conduction and radiation are mutually inde-
pendent, and the augmentation ratio « equals 1.0.
At a given value of Ngg, the maximum augmenta-
tion ratio occurs in the range 0.5<r,<1.5. As
7, increases, the augmentation ratio rapidly ap-
proaches unity again. This latter result is also
indicated by use of the Rosseland approximation
at large 7, In an optically dense medium, the
local heat flux at a point due to combined radia-

tion and conduction, by using the Rosseland
approximation (ref. 2) is given as:

s\ d7°

160 T T
dy

o= (1102

The heat flux between parallel flat plates must
remain constant in the region between the plates

for T(0)=T, (12)

in the absence of internal sources or sinks. Inte-
gration of equation (12) yields
A 4 .
¢=7 (LT )+ 7 (T4=TY (13)

The heat transfer by conduction alone is
A
QC:E (T*_Tc)

and by radiation alone is

_ 40 4 T4
From equation (13) the result obtained is that for
large values of 7,, where the Rosseland approxima-
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tion is valid, there is again no interaction, and,
therefore, the augmentation ratio again becomes
unity, in general agreement with the trends shown
in figure 6. For the case where 7,/T+=0.2 shown
in figure 6(a), the maximum .augmentation is
about 1.085 and occurs at Nep=0.200 and r,~1.2.

A comparison of figures 6 (a) and (b) shows the
effect of decreasing the temperature difference
between the plates on the augmentation ratio.
As expected, when the temperatures of the plates
become nearly the same, the augmentation effect
decreases markedly. The reason is that for small
temperature différences the radiation transfer can
be approximated by the linearized relation:

AT*=4T3AT  for AT small

Since for small AT the coefficient 47® remains
nearly constant, the radiative transfer is nearly
linear in AT. Because conduction is always
linear in A7, there is very little nonlinear inter-
action between the two processes, and the augmen-
tation ratio approaches unity as AT—0 for all
To and NcR.

o

>9— — T T LIS
T & Plate A
= : 1.08 ol b temperature ||},
S o 7 > | ratio
2 o K1 T Eh) ]
‘6 — N 75/7}
£ 21.06 D (]
S N El

g v 7

ot
£y ] ] I 0.2 e
g gl ; J
S | [ [
= 1.00

0l .02 .04 Ri 2 4.6 1 2 4 6810

Gonduction - radiation parameter, Npp= (\/0) /o T3

FieorE 7.—Maximum value of augmentation ratio with
respect to opacity as function of conduction-radiation
parameter for different values of plate temperature ratio.

Figure 7 summarizes the effect of Ngr on the
augmentation ratio «. The maximum values of
o, with respect to 7, from figures 6 (a) and (b)
are shown as functions of Ngg for two different
plate temperature ratios. It is seen that the
maximum interaction between conduction and
radiation heat transfer occurs in the range 0.1<

cr<1.0. Also, in agreement with the last
paragraph, the level of interaction decreases as
the temperature ratio of the plates approaches
unity.

RADIATION TO A FLOWING GAS

For the discussion of the effects of radiation
to a flowing nonconducting gas, it is again desir-
able to present the resuits in terms of pertinent
dimensionless parameters. In the discussion that
follows, both plates are aft the same uniform
temperature 7%, and the gas enters the channel
at one end through a porous black plug, which
is at the initial gas temperature T;. The gas
flow is in the direction of length L, as shown in
figure 1. The results to be given are for the case
of slug flow, where the flow density & is uniform
over the channel cross section. The temperature
of the porous plug at the end of the channel
through which the gas leaves is uniform over that
end and is seb equal to the mean mixed exit gas
temperature T,. As in the previous case for
conduction, when equation (1) is divided by
Ttk and the conduction term is neglected, the
result is

T >
R - TR e

T,,O‘T::; T
2(5)

+[[ [TTL?] gHAA (14)

Then in the same manner as for equation (11)
the temperature profile in the channel is deter-
mined by the following set of parameters: Gc,/
¢T2, 7oy L/D, TifTe. The parameter Gc,/ocTs,
which is known as the Boltzmann number Ngo, de-
termines the effect of a flowing gas on the solution
of equation (1). This paramefer was also used
in the presentation of results in reference 3. In
ficure 8, the thermal effectiveness parameter

T,—T,;
AT T
actually transferred to the flowing gas from the
radiating walls to the maximum heat transfer
theoretically possible. The value of 7, in the
expression for A is an integrated mean value of
gas temperature at the channel outlet taken over
the channel cross section. Although the gas
enters the channel at a uniform temperature 77,
the temperature at the channel outlet is not
generally uniform, as will be shown shortly. An
interesting characteristic of radiation from a
constant-temperature surface to a flowing gas,

represents the ratio of the heat
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shown in figure 8, is that for a given value of
Ngo the radiation absorbed by the gas go
through a maximum with increasing absorptivity
of the gas, This effect, which is also brought
out in the results of reference 3 3, may be explained
theoretically as follows. As r, increases beyond
a certain point, most of the radiation emitted
by the plates Is absorbed in the layers of
close to the plates and, thus, cannot irradiate
the bulk of the gas stresun in the center of the
channel, As r, continues to increase, the thick-
ness of the gas layer next to the wall that is re-
quired to attenuate the direct emission from the
wall becomes smaller, and more of the direct
radiation absorbed in this gas layer is reemitted
to the wall. Thus the amount of gus in the center
of the channel, which is not “seen” by the wall
and thus remains relatively unheated, becomes
greater. ‘This results in reduced overall heat
transfer to the gas.

The effect of this self-shielding by the gas can
also be seen in figure 9 by comparing the transverse
as temperature profiles at the exit for a wealk and

SO —

Boltzmann number,

—

1.6 24 32 4.0 48 56 6.4

Optical distonce between plotes, T,

Froure -Dimensionless heat transfer to flowing gas
from isothermal flat plates in rectangular channel as
funciion of gas opacity with slug flow.  Ratio of gas
inlet Lo plate temperature, 0.4; aspeet tatio, 10.

ABRONAUTICS

AND (8 ADME

105

Chanmnel - wall
temperature 7

r

7x

Optical distancs
between plates,

Gos temperature,

2

in gas ab
t‘vmpm Lure,
pa,z‘z;umetm () 3%,

strongly absorbing gas. At 7=
practically no seif-shielding, and the h*mpx :
brnﬁl@ ACTOSS thﬂ wh-mlml is t\urlv flat, - For

of l the tempr‘mtnr‘ pxoﬁlv shmw- tlm

e‘\pectmi! The gas temperature near the wall
becomes higher ag » result of the strong

the wall, and the as tempa ratnrn in t}m

the stream is decreased as a result of the center &‘!f
the channel being shielded from the wall by the
strongly absorhing intervening gas. :

CONCLIDING REMARKS

The general method of the present analysis for
solving the problem of combined radisntion, con-
duction, and flow closely parallels that of refer-
ence 4. Though its application in this report was
restricted (o o rectangular channel of finite length
and infinite width, the method is gquite general in
that it may be ended to more complieated
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configurations. Though the present method can
be extended to nongray gases (where £ is depend-
ent on the wavelength of radiation) by simulating
the real gas by a mixture of gray gases as outlined
in reference 4, it would be very difficult to extend
it, in its present form, to the case of temperature
or spatially dependent absorption coefficient.

The parameter that is representative of the
effects of combined radiation and conduction in an
absorbing gas is (\/D)/eT2. Introducing con-
duction in conjunction with radiation makes the
temperature profiles continuous at the bounding
surfaces and results in higher temperature gradi-
ents at cool surfaces than those that would be
obtained for conduction alone. In other words, a
radiation-absorbing gas increases the conduction
heat transfer to cool surfaces. The total com-

bined conduction and radiation heat transfer be-
tween parallel flat plates separated by an ahsorb-
ing gas is slightly greater than the sum of the
conduction and radiation heat transfer taken
separately.

The parameter that is indicative of the effect of
a flowing, absorbing gas on radiation is Ge,/cT'3.
The heat transferred from a constant-temperature
surface to a cooler, flowing, absorbing gas goes
through a maximum as the opacity of the gas is
increased. For the configuration discussed in this
report, the maximum heat transfer occurred in the
range 1.5<7,<(3.0.

LEwis REsEaARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CLEVELAND, OHI10, Seplember 12, 1962
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APPENDIX A

SYMBOLS
surface area v
specific heat of gas
distance between plates %
emissive power, o1 Y

exchange factor functions (see egs. (B6),

(B11), (B16))

gas-line-source to gas radiation exchange
factor

flow density of gas, weight flow per unit
area

surface-line-source to gas radiation ex-
change factor

surface-line-source to surface radiation
exchange factor

radiation absorption coefficient of gas,
reciprocal length

length of channel or plates

Boltzmann number, Ge,/c T3

conduction-radiation number, (\/D)/cT',

points in coordinate system

heat transferred

position vector of fixed point in channel or
on surface

position vector of variable point in channel
or on surface

relative position vector between two points
in channel

temperature

length of gas zone

coordinate in gas zone parallel to z-direc-
tion

height of gas zone

14

coordinate in gas zone parallel to y-direc-
tion

coordinate along length of channel

transverse coordinate perpendicular to
plane of plates and z

o augmentation ratio, gre/(¢e+qz)

A thermal-effectiveness parameter, (T,—T7)/
(Tx—T)

A thermal conductivity of gas

o Stefan-Boltzmann constant

T optical thickness

dr infinitesimal volume element in gas

To optical distance between plates, £D

Subscripts:

C conduction

c cooler plate

e porous end surface

in inlet conditions

2,7 positions along length and across channel,
respectively, of fixed gas zone (usually
zone on which heat balance is taken)
i=1, 10; j=1, 10

kL plate or end numbers, k=1, 2; [=1, 2

m,n  general positions along length and across
channel, respectively, of end surface or
gas zone, m=1, 10; n=1, 10

0 integrated mean conditions at outlet of
channel

P plate surface

R radiation

s surface

v volume element

*

reference value
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APPENDIX B

DERIVATION OF LINE-SOURCE TO POINT

GAS-LINE-SOURCE TO GAS RADIATION EXCHANGE FACTOR
-
f(s)

Consider the configuration illustrated in sketch
(a). An infinite line source of radiating gas of
constant emissive power K, and of cross section
dA is located at a distance s from an infinitesimal
volume of absorbing gas at point P. At each
point ¢ on the line, the radiation emitted is

4k dA d2 E,

The amount of the radiation emitted at @ in the
direction of P is then

4k dad: g o t;E

where dA4, is the projected area of dV in the direc-

tion of §. The amount of this energy that reaches
P is attenuated exponentially to give
kd4 dz dA, o
Wtz I\IEg

Of this amount reaching P from @, the fraction
k ds, is absorbed at P, where ds, is the mean path
length through dV. It can be shown from the
definition of mean path length through dV, that
dA4, ds,=dV. Thus, the energy originating at
@, which is absorbed at P, is given by

k*dA dz dV

dg=" "

HE, (B1)
The contribution from the entire line to the absorp-

tion at P is obtained by integrating over all the

source points on the line, that is, from z=—ow
to z=-+wo. Thus,
2
6,0t 44 dVE [ “d:  (B2)

EXCHANGE FACTORS

()

Refer to sketch (a) and make the substitutions
t=s sec 8 and z=s tan 6. 'Then,

+oo -kt +7/2
e 1

f Te dZ——-_ f [
— S —7/2

Finally, since the integrand in equation (B3) is
an even function of 6,

—ks/cos @ d 1]

(B3)

pH AV g, f emiesody (B
-

The exchange factor f(s) from an infinite line

of cross section dA4 to a volume dV is then given by

/2
e —ks/coB @ de

=2k (B5)

Note that the integral itself is a function only
of ks. Define r=Fks, then

w/
F)= [ emrroneds (B6)
o

The function F,(r) was obtained by numerical
integration and is plotted in figure 10.

15
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D > -
hl
-n
.

.02

.0l
.008
.006

Exchonge factor function, #, ()

004

002} . : . .

o001l | | | |
0 ! 2 3 4 5 6

Optical thickness,

Freure 10.—Variation of exchange factor function with
optical thickness;
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SURFACE-LINE-SOURCE TO GAS RADIATION EXCHANGE

st (cos 8)*~1 do.

-
FACTOR ¢(s)

Consider the configuration illustrated in sketch
(b). An infinite line source of radiating surface
of width dz and constant emissive power E; is
located at a distance s from an infinitesimal
volume of absorbing gas at point P. At each
point @ on the line surface, the radiation emitted
in the direction of P is

E cos ¢ dx dz d?

where ¢ is the angle between the normal to the
surface and the ray from @ to P. Then, in the
same manner as before, the energy emitted at @
that is absorbed at P is given by

k av

dq=£ cos ¢ da dz B7

AERONAUTICS AND SPACE ADMINISTRATION

Again, integration over the entire line on the
surface yields the total contribution:

sd kdvf

Refer to sketch (b) and note that Y is the per-
pendicular distance from dV to the plane in which

cos edz (BS)

the line-surface source lies. Make the following
substitutions: ¢=s sec 6, z=s tan 6, and cos
o=1Y/t=(Y/s) cos 6. By using these transforma-
tions, the total contribution is obtained and is
given by

” T2
8qg=2 % dek dV z—gf e~*/%%0 cos 6 A6 (B9)
0

N
The exchange factor g(s) from a surface-infinite-
line source of width dz to a gas volume dV is then
given by

Y

-5
g(s) == e—ks/cos % cos 0 46
JO

(B10)

Again, the integral itself is a function only of ks.
Define

/2
F2(7)=f e~ 7/ 8 cos 6 d6 (B11)
0

The function F,(r) was obtained by numerical
integration of equation (B11) and is plotted in
figure 10.
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SURFACE-LINE-SOURCE TO SURFACE RADIATION EXCHANGE
FACTOR h(;))

Parallel surfaces.—Consider the configuration

given in sketch (c). An infinite-line-surface

source of width dx and constant emissive power
E, is located at a distance s from an infinitesimal
surface area dA at a point P in a plane parallel
to the plane of the line surface source. At each
point @ on the line surface source, the energy
emitted in the direction of P is

E‘fCOSgodxdszcZOS‘o
s t

Again ¢ is the angle between the normal to the
surfaces and the ray from P to Q. If both sur-
faces are black, the energy radiated suffers only
exponential attenuation, and, consequently, the
energy emitted by @ that is absorbed at P is

—kt
dqz% costpdrdz - da (B12)

Again, integration over the entire line source
yields the total contribution at P:

G+ oo —kt
5= dsdA [ Srcospds  (BID)
Refer to sketch (¢) and make the same substitu-
tions as before with Y as the perpendicular
distance between the surfaces and cos ¢=(Y7s)
cos 6:

2 /2
sg=22 4z aa Xy f ¢ 0 0052 0 40 (B14)
[\]

-
The exchange factor h(s) from a surface-infinite-
line source of width dz to a surface area dA parallel
to the plane of the line source is now
2 *x/2
heo=22

T & 0

e~ks/e%88 00529 d9  (B15)

The integral is a function only of ks and may be
defined as follows:

/2
F3(1)=L e~ %0 cos? 9 d6 (B16)

The function F;(7) is plotted in figure 10.
Perpendicular surfaces,—Consider the case

where the surfaces are perpendicular as shown in

sketch (d). The infinite-line-surface source lies

(d)

in one of the planes at a distance s from an in-
finitesimal area dA at a point P in a plane per-
pendicular to the plane of the line-surface source.
In the same manner described previously, the
energy emitted at each point @ on the line source,
which is absorbed at dA4, is

e—kl
2
The angle ¢; is the angle between the ray from
Q to P and the normal to the plane of the line-
surface source. The angle ¢, is the angle be-
tween the ray {from @ to P and the normal to
the plane of dA. Let X be the perpendicular
distance from P to the line-source plane and Y
be the perpendicular distance from the line source
to the plane of dA. Then from sketch (d)
cos o=(X/s)cos 6 and cos ¢@=(Y/s)cos 6.
Then, integrating over the line and transforming
the integrand into a function of 6 as before yield

dqz% €OS ¢ COS ¢y dz dz (B17)

/2
5g=2 E? dz dA —4;1 f e /%080 cos2 9 dg  (B18)
0

The exchange factor for perpendicular surfaces is

w2
We)y=2 XL [ grremo costgdg  (B19)

mT 8 0
which is similar to A(s) for parallel surfaces in
equation (B15). The integral is again the function

F3(ks) described in equation (B16).



APPENDIX C

COMPUTATION OF GAS-ZONE EXCHANGE INTEGRALS

Consider the problem of computing the radia-
tion transfer from one of the gas zones to an
infinitesimal volume located at the center of one
of the other zones. This situation is illustrated
in figure 11. The gas zone is infinite in a direc-
tion perpendicular to the plane of the figure and
is of rectangular cross section as shown. The

Cross section ot
(//) th zone

v
oy

I Tm,n +1

2}

- — Cross section of

o W

m {m,n) th zone
u
Tm_""\\o — \h )
. ||
A O
vdv

U

T4 =Tm +(7',,,4_[,,,‘7'1$1.n) Ul + (r/:,m-! ‘7"?'.”) 'L;

Ficure 11.—Sketch illustrating method of integration of
gas to gas exchange factors from (m,n)t* zone to dV
at the center of (¢,7)tP zone.

region of the zone is described by the coordinate
system «, », which has its origin at the center of
the zone. The position at any point in the zone

7y
cross section is designated by r (u, v). The posi-
tion of the infinitesimal volume in the (7, j)*

N
zone is R, , The region enclosing both the zone

and Z_i;i, ; consists of a uniformly absorbing medium.

The (m, n)™ zone may be thought of as consisting

of a bundle of line sources each of infinitesimal

area du dv. The emissive power distribution in

the zone is a linear function of u, v given by equa-

tion (3), and the orientation of the coordinate
18

system w, v is such that the positive direction is

2
toward R;; The exchange factor between one
of the line sources in the zone and the point

Y
R, ;is given by
- 5 o -
Sf(s); s=[r(u,v)— R, ;]

=
Since the form of f(s) is such that the volume
integral over the gas zone reduces to a surface
integral over the zone cross section, the radiation
from the entire zone, which is absorbed by dV at

T
R, ;is given by
sg=k AV f f oT4(u, 0) {7 (u,0)— By Jdu do  (CL)

Substitution of equation (3) for 7"(u, v) yields

dq

k dV:UTg"’"fff(;)du w
P T (LG a

+a_(z4ﬁ,fni1}—Tfn, ") f f vf(?)du de  (C2)

where ¢T'% , is the emissive power at the center
of the cross section of the (m,n)™ zone and 1.y, ,,
T e are the temperatures at the center of
the cross section of the zones adjacent to the
(m, n)™ zone in the axial and transverse directions,

-
respectively, toward dV at B. As a result of the
previous substitutions, the emissive powers do not
enter the integrations, and the remaining integrals

are only dependent on the position of R relative to
the (m,n)™ zone. The integrations are per-
formed numerically over the zone —U/2<u<U/2
and —V/2<0<V/2 by dividing the zone into a
partition of small rectangles and summing the
integrands over this partition. It is convenient to
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present the final results in the following manner,

Define
f f uf (Z)du do
= nzgnf f £(s)du do

f f of (3)du do

oy fff(?)du dv

| 1

where —-2—<xm, n<§
(C3)

1 __ 1

where —'2<ym,n<—2'

(C4)
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Again %, , and ¥, , are functions only of the zone

size and the position of B relative to the zone.
With these definitions, the heat absorbed at dV
from emission due to the (m, n)* zone is

6 — — —_
7 (ilvzo[(l—x—y)Tfn,n—f—fonth

A PT 4, nes) f f f()du do  (C5)

Equation (C5) is then used to evaluate the ex-
change integrals, which appear in equation (2),

in terms of the gas-zone-center emissive powers
ol n



APPENDIX D

RADIATION TO POINT FROM DISTANT SOURCES IN HOMOGENEOUS MEDIUM

Consider sketch (e¢). Radiation is absorbed at
point P from the surrounding medium, which is

(e)

homogeneous in both absorptivity and emissive
power. Consider the point P to be at the center
of an infinite sphere, and let dV represent an
infinitesimal volume located at P. The radiation
emitted from an infinitesimal volume 7’ dw dr
located at @ on a thin shell of thickness dr at
radius r from P is

4k Er? dw dr

where dw is an infinitesimal of solid angle. The
radiation absorbed at P because of emission at
Q is then
—kr
Sgosp=4kEs* dw dr ;1%5 kdv (D1

20

Integration with respect to w gives the radiation
absorbed at P because of emission from the thin
shell at radius 7r:

2 T
qp:k £, dV e *dr f4 do
™ 0

3gp=4k*E, dVe™ dr

(D2)
(D3)

Then the absorption at P due to all radiation
emitted in the medium at a radius from P of
r>a is given by

Qo dE, AV f " ok dr—4kE, dVe  (D4)

The radiation emitted from dV at point P is
4kE, dV. Then the ratio of the amount received
from all sources at distances farther than o from
P to that emitted at P is simply

Qa—)P:e_ka

0 (D5)

Thus, the sum of all sources more than seven
mesan free paths (ka>>7) of radiation away from
P contributes less than 0.001 of the radiation
emitted at P and, thus, may be neglected. This
conclusion is strictly true only for a medium of
homogeneous emissive power; however, it is also
valid for nonhomogeneous emissive power distri-
butions if the emissive power at points seven or
more mean free paths away is of the same order
of magnitude as that at P.



APPENDIX E
SOLUTION OF EQUATION (2) FOR ZONE-CENTER TEMPERATURES T, .

Equation (2) is the heat-balance equation on
an infinitesimal volume at the center of the
(7,7)*™ zone. In order to solve for T, ., equation
(2) must be solved simultaneously for all 100
zones (t=1,10; j=1,10). Equation (2) is linear
in T* except for the terms in T that arise from the
derivative terms for conduction or flow. Gen-
erally, each equation in the system will have terms
in it for all 100 unknowns T, ,. Define the co-
efficients for T,:, in the (i, 7)™ equation to be

mn

Cr. 1, where the subscripts & and [ are defined as:

k=10(j—1)+i (E1)
I=10(n—1)+m (E2)

Note that in equation (2) for the (7, 7)*™ zone the
only terms in 7, , that can appear are T;; and
those for the immediately adjacent zones T,y ;o,.

4
€11 . .CLp. .. Cligo Tl,l

4
Cr,1 w0 o Crire o o v Criigo . Tm.n

C100,1 « - - Cr00,2 - - « C100, 100 T 10

dl.l d1,2

+ 0...0 dk.k—IO 0... 0 dk.k—l dk,k dk,k-l—l

Since the terms in 7* in equation (K4a) are pre-
dominant over those in 7, it is convenient to
solve equation (E4a) in terms of T* rather than
for T directly. Let E=¢T* and T=(E/¢)"*
Since equation (E4a) is usually nonlinear, it must
be solved by iterative methods. A method well
suited to this problem is the Newton-Raphson
method described in reference 6. A brief descrip-
tion follows. Each row of equation (l4a) may be

-

considered a scalar function of the vector E,

where E=(T%, ... Th, ... Thw) and f(E)
is given by the following relation:

0...0 ([1'11 0 ............................... 0 Tl,l R1

Define the coefficients of these T’ terms in the
(1,7)t" equation to be dy ;. The subscript for the
coefficient dy, ; of T';,in the (¢, 7)™ equationis k, k,
for Tt:!:l,] is k, k:l:l, and for Ti,j:i:l is k, k:l:lO.
Thus, the only nonzero coefficients of 7'in the (7, 7)™
equation are dy, z, dx xy1, a0d i, re10; di,; is defined
to be identically zero for all other subscript
combinations. Thus, for the (7, 7)™ zone, equation
(2) has the following form:

Z Ok, 1 T;in, n+m21) dk. 1 Tm, n:Rk (E3)

m=1,10 =110
n=1,10 n=1,10

Il

The R, are the nonzero right sides due to the
presence of the known values of the boundary
surface temperatures in equation (2). Thus, all
100 heat-balance equations of the form of equation
(2) may be written in matrix form as follows:

O...O dlc.k+10 00 . Tm,n _Rk =O (E4:a.)

0...0 leO. 99 leO, 100 TID. 10 RIOO

5
fk(E)szIIOOk' lT‘rin,n_*_ glodk, le.n_RIa
n=1,10 =110

Il

Thus, (E4a) may be written in shorthand form as

s - N
fl(E) =0

{5 <ot (E4b)

. =
\ floo(E)zoJ
21
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-
A trial value of E is substituted into equation
(E4a). Since this trial value is probably not the
correct solution, the right sides of equation (K4a)
will be nonzero. Define this set of nonzero resid-

-
uals as the vector P.
The Newton-Raphson method makes possible

the calculation of a correction vector AE to be

S
added to the trial value E;, where 7 is the trial
number. With this correction vector, the next

trial value E‘Hl, can be obtained, which will be

closer to the solution than the last trial vector

- -
E,. This new trial value E;,, is substituted into
equation (E4a), and the new residual vector,
-

P;.;, is computed. This iterative process con-

dk. k dk, k+1

o
tinues until the residual vector P, becomes arbi-
trarily small, which indicates that the last trial

-
value of £ is approximately the exact solution,

—_—
The correction vector [ is derived by solving
the following system of equations:

—_—
Vfl . AE: _Pl

: —
ka -AE=—P;

—

VflOO * AE: _PIOO

where Vvf; is the gradient of f; which in matrix
form in terms of the actual function is

0...0 dygero 0...0

€11 €1 -+ C1100 AEl,l
Ci1 Cot v Criw | |AEm g
C100,1 « ++ Ci00,2 - -+ Cioo, 100 AEIO, 10
dl,l d1'2 0 e 0 dl,ll
1
+Z O ... 0 dlc,k—lO O .. 0 dk,k—l

...0 dmo,gg

Tl,l
E.

AE,

dlDO. 100

P,

PIOO
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Equation (E5) is linear in the correction vector

— —

AE and may be solved for AE by using standard
matrix methods for large systems of linear equa-
tions. The term arising from the nonlinearity in
equation (F4a) stands out clearly as the second
term on the right and is due to the presence of the

conduction and flow terms of equation (2). If

care is taken to choose the first trial value ]-E)Z'l
to be reasonably close to the correct solution, the
method just discussed converges very rapidly.
Although equation (E5) was solved in terms of
E, the results are quickly transformed into terms
of T since Ty n="_Ern of)"*.
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